El uso de inteligencia artificial en el análisis forense de imágenes y videos en investigaciones criminales: una revisión sistemática
DOI:
https://doi.org/10.59956/escpograpnpv5n1.1Palabras clave:
inteligencia artificial, análisis forense digital, videos forenses, redes neuronales, reconocimiento facial, evidencia digitalResumen
El propósito de este estudio fue analizar el uso de inteligencia artificial en el análisis forense de imágenes y videos dentro de las investigaciones criminales. Para alcanzar este objetivo se llevó a cabo una revisión sistemática siguiendo las directrices PRISMA, considerando literatura publicada entre 2018 y 2025 en bases de datos como IEEE Xplore, Scopus, ScienceDirect y SpringerLink. La selección incluyó artículos con aplicaciones prácticas y evidencia empírica relacionados con técnicas de visión computacional, redes neuronales y aprendizaje profundo. Los hallazgos muestran que la inteligencia artificial ha mejorado de manera notable la autenticación de material audiovisual, la detección de deepfakes, la identificación facial y la optimización del análisis de video, permitiendo automatizar procesos y superar en algunos casos el rendimiento humano. Sin embargo, persisten limitaciones vinculadas con la calidad de los datos, la explicabilidad de los algoritmos, los sesgos en los modelos y la escasa estandarización de datasets. En conclusión, la inteligencia artificial constituye un complemento fundamental para la labor pericial, pero su implementación requiere validación científica, transparencia, regulación legal y formación especializada que garanticen un uso ético y responsable.
Descargas
Citas
Akhtar, N., Hussain, M., y Habib, Z. (2024). DEEP-STA: Deep learning-based detection and localization of various types of inter-frame video tampering using spatiotemporal analysis. Mathematics, 12(12), 1778. https://doi.org/10.3390/math12121778
Bao, Q., Wang, Y., Hua, H., Dong, K., y Lee, F. (2024). An anti-forensics video forgery detection method based on noise transfer matrix analysis. Sensors, 24(16), 5341. https://doi.org/10.3390/s24165341
Baracchi, D., Shullani, D., Luliani, M., y Pisa, A. (2023). FloreView: An Image and Video Dataset for Forensic Analysis. IEEE Access, 11. https://doi.org/10.1109/ACCESS.2023.3321991
Bonomi, S., Casini, M., y Ciccotelli, C. (2020) B-CoC: A blockchain-based chain of custody for evidences management in digital forensics. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/OASIcs.Tokenomics.2019.12
Buolamwini, J., y Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. Proceedings of the 1st Conference on Fairness, Accountability and Transparency, 81, 77–91. https://proceedings.mlr.press/v81/buolamwini18a.html
Casey, E. (2019). The chequered past and risky future of digital forensics. Australian Journal of Forensic Sciences, 51(6), 649–664. https://doi.org/10.1080/00450618.2018.1554090
Chandrasekaran, N., y Balasubramanian, Y. (2025). FAQIVS: Face Query-based Interactive Video Synopsis*. Automatika, 66(2), 217–236. https://doi.org/10.1080/00051144.2025.2459987
Diwan, A., Mahadeva, R., y Gupta, V. (2024). Advancing copy-move manipulation detection in complex image scenarios through multiscale detector. IEEE Access, 12, 64736–64753. https://doi.org/10.1109/ACCESS.2024.3397466
Farid, H. (2009) Exposing Digital Forgeries in Scientific Images. Science, 324(5928), 366–367. https://doi.org/10.1126/science.1170666
Geradts, Z., y Riphagen, Q. (2023). Interpol review of forensic video analysis, 2019–2022. Forensic Science International: Synergy, 6, 100309. https://doi.org/10.1016/j.fsisyn.2022.100309
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., y Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems. 2672–2680. https://proceedings.neurips.cc/paper_files/paper/2014/file/f033ed80deb0234979a61f95710dbe25-Paper.pdf
Goodison, S., Davis, R., y Jackson, B. (2015) Digital evidence and the US criminal justice system. RAND Corporation, Santa Monica, Calif. https://www.ojp.gov/pdffiles1/nij/grants/248770app.pdf
Hosler, B., Zhao, X., Mayer, O., Chen, C., Shackleford, J., y Stamm, M. (2019). The Video Authentication and Camera Identification Database: A New Database for Video Forensics. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2922145
Jang, M. (2024). Exploring the quantity and type of evidence collected during criminal investigations in South Korea. Forensic Science International: Synergy, 9(19), 100544. https://doi.org/10.1016/j.fsisyn.2024.100544
Kleider, H., Stevens, B., Mickes, L., y Boogert, S. (2024). Application of artificial intelligence to eyewitness identification. Cognitive Research: Principles and Implications, 9(19). https://doi.org/10.1186/s41235-024-00542-0
Kroll, J., Huey, J., Barocas, S., Felten, E., Reidenberg, J., Robinson, D. y Yu, H. (2017). Accountable algorithms. University of Pennsylvania Law Review, 165(3), 633–705. https://scholarship.law.upenn.edu/penn_law_review/vol165/iss3/3
Kumawat, C., y Pankajakshan, V. (2021). A JPEG forensic detector for color bitmap images. IEEE Open Journal of Signal Processing, 2, 280–294. https://doi.org/10.1109/OJSP.2021.3075917
La Cava, S., Orrù, G., Drahansky, M., Marcialis, L., y Roli, F. (2023). 3D face reconstruction: The road to forensics. ACM y Surveys, 56(3), 77.1 – 77.38. https://doi.org/10.1145/3625288
LeCun, Y., Bengio, Y., y Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Page, M., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T., Mulrow, C., y Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Parkhi, O., Vedaldi, A., y Zisserman, A. (2015). Deep face recognition. En Xie, X. M., Jones, W. y Tam, G. (Eds.), Proceedings of the British Machine Vision Conference (BMVC) 41, 1-12. BMVA Press. https://dx.doi.org/10.5244/C.29.41
Qureshi, S., Saeed, A., Almotiri, S., Ahmad, F., y Al Ghamdi, M. (2024). Deepfake forensics: A survey of digital forensic methods for multimodal deepfake identification on social media. PeerJ Computer Science, 10, e2037. https://doi.org/10.7717/peerj-cs.2037
Redmon, J., y Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv preprint arXiv:1804.02767. https://arxiv.org/abs/1804.02767
Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., y Nießner, M. (2019). FaceForensics++: Learning to Detect Manipulated Facial Images. Proceedings of the IEEE/CVF International Conference on Computer Vision, 1-11. https://openaccess.thecvf.com/content_ICCV_2019/papers/Rossler_FaceForensics_Learning_to_Detect_Manipulated_Facial_Images_ICCV_2019_paper.pdf
Saddique, M., Asghar, K., Bajwa, U., Hussain, M., y Habib, Z. (2019). Spatial video forgery detection and localization using texture analysis of consecutive frames. Advances in Electrical and Computer Engineering, 19(3), 97–108. https://doi.org/10.4316/AECE.2019.03012
Saddique, M., Asghar, K., Bajwa, U., Hussain, M., Aboalsamh, H., y Habib, Z. (2020). Classification of authentic and tampered video using motion residual and parasitic layers. IEEE Access, 8, 56782–56797. https://doi.org/10.1109/ACCESS.2020.2980951
Schetinger, V., Oliveira, G., Pedrini, H., y Da S. Oliveira, L. (2015). Humans are easily fooled by digital images. Computers & Graphics, 52, 91–103. https://doi.org/10.1016/j.cag.2015.07.008
Verdoliva, L. (2020) Media Forensics and DeepFakes: An Overview. IEEE Journal of Selected Topics in Signal Processing, 14(5), 910-932, https://doi.org/10.1109/JSTSP.2020.3002101
Wang, T., Cheng, H., Chow, K., y Nie, L. (2023). Deep convolutional pooling transformer for Deepfake detection. ACM Transactions on Multimedia Computing, Communications, and Applications, 19(6), Article 179, 1-20. https://doi.org/10.1145/3588574
Xiao, J., Li, S., y Xu, Q. (2019). Video-based evidence analysis and extraction in digital forensic investigation. IEEE Access, 7, 55432–55442. https://doi.org/10.1109/ACCESS.2019.2913648
Yao, Y., Hu, W., Zhang, W., Wu, T., y Shi, Y.-Q. (2018). Distinguishing computer-generated graphics from natural images based on sensor pattern noise and deep learning. Sensors, 18(4), 1296. https://doi.org/10.3390/s18041296
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Escpogra PNP

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.